Я хотел бы описать еще одно поле, на котором пока мало что было сделано, может быть сделано очень многое. Это поле не совсем такое, о каких говорится сегодня в фундаментальной физике (то есть ничего об элементарных частицах). Это скорее будет относиться к физике твердого тела в том смысле, что новая область деятельности может рассказать нам много интересного о странных явлениях, которые происходят в сложных ситуациях. Кроме того, в этой области может быть огромное количество технических приложений.
Я хочу поговорить о проблеме управления и контроля за телами в малых масштабах.
Как только я упоминаю об этом, люди говорят мне о миниатюризации, и как далеко она сегодня продвинулась. Они говорят мне об электрических двигателях, которые имеют размер ногтя на мизинце. Они говорят, что на рынке есть устройства, с помощью которого вы можете записать Библию на булавочной головке. Но это только самые поверхностные подступы к тому, что я намерен обсудить. Это поразительно маленький мир, который находится там, внизу. В 2000 году, когда люди будут оглядываться назад, они будут удивлены, почему до 1960 года не было никого, что начал бы серьезно двигаться в этом направлении.
Чудеса биологических систем
Поразительны примеры микроскопической, сверхкомпактной записи в биологических системах. В биологии информация не просто записывается, она обрабатывается и используется. Несмотря на то, что сами биологические системы (имеются в виду биоклетки) очень малы, они могут осуществлять весьма разнообразные и очень активные действия: вырабатывать различные вещества, изменять собственную форму и выполнять другие сложные операции. Представьте себе возможности, которые открываются в случае изготовления микроскопических объектов, способных выполнять такие действия!
В сущности, производство таких сверхмалых объектов может быть коммерчески интересным. Например, можно напомнить о некоторых проблемах, связанных с вычислительной техникой. Компьютеры должны хранить огромное количество информации. Очень важно иметь возможность «стирать» предыдущую информацию и записывать на ее место новую, причем всегда жалко уничтожать материал, на котором осуществляется запись. Однако если для записи требуется лишь ничтожный объем легко воспроизводимого вещества, то материал можно не экономить, а просто выбрасывать после считывания информации.
Миниатюризация компьютеров
Существующие вычислительные машины слишком громоздки, и мне хочется обсудить (не вдаваясь в детали практической реализации предлагаемых идей) возможность существенного изменения их размера. Если, например, диаметр соединяющих проводов будет составлять от 10 до 100 атомов, то размер любой схемы не будет превышать нескольких тысяч ангстрем. Каждый, кто связан с компьютерной техникой, знает о тех возможностях, которые обещает ее развитие и усложнение. Если число используемых элементов возрастет в миллионы раз, то возможности компьютеров существенно расширятся. Они научатся рассуждать, анализировать опыт и рассчитывать собственные действия, находить новые вычислительные методы и т. п. Рост числа элементов приведет к важным качественным изменениям характеристик ЭВМ.
Рассмотрим, например, следующую проблему. Любой из нас без труда воспринимает изображение или лицо другого человека, однако пока не удалось создать компьютер, который был бы способен достаточно быстро воспринимать изображение и распознавать на нем человеческие лица. Разумеется, компьютеры не могут идентифицировать эти лица (пока они способны лишь сопоставить два абсолютно одинаковых изображения). Между тем человек без каких-либо проблем узнает знакомое лицо через много лет, на разных расстояниях или при разном освещении, т. е. микрокомпьютер, заложенный в наш мозг природой, легко справляется с задачей, совершенно непосильной для самых мощных современных вычислительных систем. Причина этого в том, что число логических элементов внутри нашей маленькой черепной коробки (ее можно рассматривать как выполненный из кости корпус этого микрокомпьютера) значительно превышает число элементов в самых высококлассных современных компьютерах, имеющих внушительные размеры. Дело не в том, что существующие компьютеры слишком велики, а в том, что элементы мозга имеют микроскопические размеры, и это наводит меня на мысль о создании субмикроскопических элементов.
Миниатюризация методами напыления
Естественно, нужно задуматься о методах создания таких устройств. Как можно изготовлять такие сверхмалые элементы и какие производственные процессы должны для этого применяться? При мысли об использовании заданным образом расположенных атомов вспоминаются возможности применения тонких напыленных слоев из атомов проводников и изоляторов. Действительно, уже сейчас мы умеем формировать напылением нужные конфигурации, содержащие все требуемые крошечные элементы электрических схем (катушки, конденсаторы, транзисторы и т. п.) в необходимом порядке. Однако хочется предложить, хотя бы в шутку, и совсем другие методы. Почему бы, например, не производить крошечные компьютеры теми же методами, какими мы производим большие? Почему бы не научиться обрабатывать микроскопические объекты точно так же, как обрабатываются большие изделия, т. е. научиться штамповать или отливать их, сверлить в них отверстия, резать, паять и т. п.?.
Давайте всерьез задумаемся над тем, что мешает создать сверхмалую копию какого-либо механического устройства, например обычного автомобиля? Прежде всего должны возникнуть проблемы с точностью обработки деталей. Предположим, что автомобиль изготовляется с точностью в одну десятитысячную метра (при меньшей точности поршни будут, например, застревать в цилиндрах двигателя и работа машины будет нарушена). При микроскопической обработке следует позаботиться о размерах порядка атомных. Копия автомобиля, уменьшенного в 4000 раз, будет иметь в длину около 1 мм, так что указанная выше стандартная точность обработки деталей двигателя (одна десятитысячная) должна в крошечной модели соответствовать размерам порядка 10 атомов (разумеется, если несколько снизить требования к эксплуатационным характеристикам этого микроавтомобиля, то можно дополнительно уменьшить его размеры).
Обсуждение проблем, связанных с созданием столь малых механизмов, ставит перед нами ряд интересных физических проблем. Уменьшение размеров ведет, естественно, к соответствующему уменьшению массы и площадей контактов, так что некоторые параметры механизмов (например, масса и силы инерции) теряют свое значение. Другими словами, мы можем просто считать, что прочность используемых материалов значительно возросла. Более того, механические напряжения и связанные с ними деформации (возникающие, например, во вращающихся деталях) должны значительно уменьшиться(они останутся неизменными лишь в том случае, если скорость вращения возрастет во столько же раз, во сколько уменьшатся размеры). В то же время следует помнить и о зернистой структуре металлов, из-за чего на микроуровне могут возникнуть серьезные проблемы, обусловленные микронеоднородностью материалов. Поэтому, возможно, сверхмалые механизмы следовало бы изготовлять из аморфных веществ, обладающих высокооднородной структурой (типа пластиков или стекол).
Некоторые проблемы могут возникнуть и при изготовлении деталей электрооборудования (например, медных проводов или магнитных устройств), поскольку магнитные свойства объектов существенно зависят от их размеров (это связанно с так называемой доменной структурой магнитных материалов). Поэтому нам придется задуматься о возможностях создания и использования магнитов, состоящих не из миллионов доменов (как принято считать в физике), а из одного единственного домена. Разумеется, схему электропитания автомобиля нельзя просто уменьшить в несколько тысяч раз, а следует существенно изменить. Но я не считаю, что при этом могут возникнуть какие-то принципиальные осложнения.
Проблемы смазки
Гораздо более важные проблемы должны возникнуть при обеспечении смазки таких сверхмалых механизмов. Дело в том, что вязкость смазочных масел растет по мере уменьшения размера зазоров (и при соответствующем увеличении скорости). Если не стремиться к очень высоким скоростям и применять вместо масла керосин или другие жидкости, то ситуация может оказаться небезнадежной. Однако я хочу обратить внимание на то, что реально можно обойтись, вероятно, вообще без смазки! Существует масса других возможностей. Например, микроскопические подшипники смогут работать и в сухом состоянии, поскольку выделяющееся в таких устройствах тепло может рассеиваться настолько легко и быстро, что подшипники не будут нагреваться.
Однако мгновенный отвод тепла в микрообъемах не позволит нагреть до достаточной температуры бензин в камере сгорания, вследствие чего в микроавтомобильчиках нельзя использовать привычные двигатели внутреннего сгорания. Придется поискать какие-то другие химические реакции, позволяющие получать энергию при низких температурах (возможно, наилучшим решением станет просто подача электроэнергии от внешнего источника).
Сотни крошечных манипуляторов
Я думаю о создании системы с электрическим управлением, в которой используются изготовленные обычным способом «обслуживающие роботы» в виде уменьшенных в четыре раза копий «рук» оператора. Такие микромеханизмы смогут легко выполнять операции в уменьшенном масштабе. Я говорю о крошечных роботах, снабженных серводвигателями и маленькими «руками», которые могут закручивать столь же маленькие болты и гайки, сверлить очень маленькие отверстия и т. д. Короче говоря, они смогут выполнять все работы в масштабе 1:4. Для этого, конечно, сначала следует изготовить необходимые механизмы, инструменты и руки-манипуляторы в одну четвертую обычной величины (на самом деле, ясно, что это означает уменьшение всех поверхностей контакта в 16 раз). На последнем этапе эти устройства будут оборудованы серводвигателями (с уменьшенной в 16 раз мощностью) и присоединены к обычной системе электрического управления. После этого можно будет пользоваться уменьшенными в 16 раз руками-манипуляторами! Сфера применения таких микророботов, а также микромашин может быть довольно широкой — от хирургических операций до транспортирования и переработки радиоактивных материалов.